Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM)
نویسندگان
چکیده
Analisis Sentimen merupakan cabang dari penelitian text mining yang melakukan proses pengklasifikasian dokumen teks. sentimen dapat ekstraksi pendapat, emosi, dan evaluasi tertulis seseorang tentang topik tertentu menggunakan teknik pemrosesan Bahasa alami. Pada ini analisis sentiment terhadap penggunaan aplikasi Shopee algoritma Support Vector Machine (SVM). Tujuan adalah untuk mengklasifikasi data komentar pengguna kedalam positif negatif dengan mempelajari pendapat melalui ulasan diberikan, mengetahui kinerja metode pengklasifikasi digunakan. diperoleh cara mengangkat penggunakan scraping berhasil mendapat 3000 ulasan. Hasil terbukti mampu menghasilkan cukup baik hasil akurasi sebesar 98% f1-score 0.98 atau 98%.Sentiment analysis is a branch of research that carries out the process classifying documents. Sentiment can extract one's opinions, emotions, and evaluations about certain topic using natural language techniques. In this study, was carried on use application (SVM) algorithm. The purpose study to classify comment from users, positive negative comments by studying user opinions through reviews provided, determine performance classifier method used. obtained collecting managed get reviews. results algorithm are proven be able produce quite good with an accuracy or 98%.
منابع مشابه
Tutorial on Support Vector Machine (SVM)
In this tutorial we present a brief introduction to SVM, and we discuss about SVM from published papers, workshop materials & material collected from books and material available online on the World Wide Web. In the beginning we try to define SVM and try to talk as why SVM, with a brief overview of statistical learning theory. The mathematical formulation of SVM is presented, and theory for the...
متن کاملAnalisis Sentimen Review Produk Kosmetik Melalui Komparasi Feature Selection
Sentiment analysis is a computational study of the opinions, behaviors and emotions of people toward the entity. The entity describes the individuals, events or topics. That topics generally could be the review of diverse datasets, one of which is a product review. By reading the review of products based on the experiences of other consumers, it will be recognized the quality of a product. It g...
متن کاملLicense Plate Recognition Using Support Vector Machine (SVM)
Automatic license plate recognition (ALPR) system for vehicles is a challenging area of research due to its importance to a wide range of commercial applications. The first and the most important stage for any ALPR system is the localization of the license plate within the image captured by a camera. In this paper proposed approach is present. It has considered the Indian number plates, where r...
متن کاملestimation of river bedform dimension using artificial neural network (ann) and support vector machine (svm)
movement of sediment in the river causes many changes in the river bed. these changes are called bedform. river bedform has significant and direct effects on bed roughness, flow resistance, and water surface profile. thus, having adequate knowledge of the bedform is of special importance in river engineering. several methods have been developed by researchers for estimation of bed form dimensio...
متن کاملSentiment Analisis on Web-based Reviews using Data Mining and Support Vector Machine
This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using support vector machine. Weka software and a movie review database from Internet Movie Database IMDb were used. This work uses preprocessing filters and WRAPPER techniques and Support Vector Machine (SVM) for classification. It presents better resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jambura Journal of Electrical and Electronics Engineering
سال: 2023
ISSN: ['2654-7813', '2715-0887']
DOI: https://doi.org/10.37905/jjeee.v5i1.16830